Selasa, 24 Mei 2016

Rumus & soal kinetika gas

Contoh Soal dan Pembahasan tentang Teori Kinetik Gas, Materi Fisika 11 Kelas 2 SMA mencakup penggunaan persamaan gas ideal, variasi perubahan volume, suhu dan tekanan pada sistem gas ideal.

Soal No. 1
16 gram gas Oksigen (M = 32 gr/mol) berada pada tekanan 1 atm dan suhu 27oC. Tentukan volume gas jika:
a) diberikan nilai R = 8,314 J/mol.K
b) diberikan nilai R = 8314 J/kmol.K


Pembahasan
a) untuk nilai R = 8,314 J/mol.K
Data :
R = 8,314 J/mol.K
T = 27oC = 300 K
n = 16 gr : 32 gr/mol = 0,5 mol
P = 1 atm = 105 N/m2



b) untuk nilai R = 8314 J/kmol.K

Data :
R = 8314 J/kmol.K
T = 27oC = 300 K
n = 16 gr : 32 gr/mol = 0,5 mol
P = 1 atm = 105 N/m2



Soal No. 2
Gas bermassa 4 kg bersuhu 27oC berada dalam tabung yang berlubang.



Jika tabung dipanasi hingga suhu 127oC, dan pemuaian tabung diabaikan tentukan:
a) massa gas yang tersisa di tabung
b) massa gas yang keluar dari tabung
c) perbandingan massa gas yang keluar dari tabung dengan massa awal gas
d) perbandingan massa gas yang tersisa dalam tabung dengan massa awal gas
e) perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung

Pembahasan
Data :
Massa gas awal m1 = 4 kg
Massa gas tersisa m2
Massa gas yang keluar dari tabung Δ m = m2 − m1

a) massa gas yang tersisa di tabung



b) massa gas yang keluar dari tabung



c) perbandingan massa gas yang keluar dari tabung dengan massa awal gas



d) perbandingan massa gas yang tersisa dalam tabung dengan massa awal gas



e) perbandingan massa gas yang keluar dari tabung dengan massa gas yang tersisa dalam tabung



Soal No. 3
A dan B dihubungkan dengan suatu pipa sempit. Suhu gas di A adalah 127oC dan jumlah partikel gas di A tiga kali jumlah partikel di B.



Jika volume B seperempat volume A, tentukan suhu gas di B!

Pembahasan
Data :
TA = 127oC = 400 K
NA : NB = 2 : 1
VA : VB = 4 : 1



Soal No. 4
Gas dalam ruang tertutup memiliki suhu sebesar T Kelvin energi kinetik rata-rata Ek = 1200 joule dan laju efektif V = 20 m/s.



Jika suhu gas dinaikkan hingga menjadi 2T tentukan:
a) perbandingan energi kinetik rata-rata gas kondisi akhir terhadap kondisi awalnya
b) energi kinetik rata-rata akhir
c) perbandingan laju efektif gas kondisi akhir terhadap kondisi awalnya
d) laju efektif akhir

Pembahasan
a) perbandingan energi kinetik rata-rata gas kondisi akhir terhadap kondisi awalnya



b) energi kinetik rata-rata akhir



c) perbandingan laju efektif gas kondisi akhir terhadap kondisi awalnya



d) laju efektif akhir



Soal No. 5
Sebuah ruang tertutup berisi gas ideal dengan suhu T dan kecepatan partikel gas di dalamnya v. Jika suhu gas itu dinaikkan menjadi 2T maka kecepatan partikel gas tersebut menjadi …
A. √2 v
B. 12 v
C. 2 v
D. 4 v
E. v2
(Dari soal Ebtanas 1990)

Pembahasan
Data dari soal adalah:
T1 = T
T2 = 2T
V1 = ν
v2 =.....

Kecepatan gas untuk dua suhu yang berbeda



Sehingga diperoleh



Soal No. 6
Didalam sebuah ruangan tertutup terdapat gas dengan suhu 27oC. Apabila gas dipanaskan sampai energi kinetiknya menjadi 5 kali energi semula, maka gas itu harus dipanaskan sampai suhu …
A. 100oC
B. 135oC
C. 1.200oC
D. 1.227oC
E. 1.500oC
(Soal Ebtanas 1992)

Pembahasan
Data diambil dari soal
T1 = 27°C = 27 + 273 = 300 K
Ek2 = 5 Ek1
T2 = .....
Energi kinetik gas untuk dua suhu yang berbeda



Sehingga diperoleh



Dalam Celcius adalah = 1500 − 273 = 1227°C
Soal No. 7
Di dalam ruang tertutup suhu suatu gas 27°C, tekanan 1 atm dan volume 0,5 liter. Jika suhu gas dinaikkan menjadi 327°C dan tekanan menjadi 2 atm, maka volume gas menjadi....
A. 1 liter
B. 0,5 liter
C. 0,25 liter
D. 0,125 liter
E. 0,0625 liter

Pembahasan
Data soal:
T1 = 27°C = 300 K
P1 = 1 atm
V1 = 0,5 liter

T2 = 327°C = 600 K
P2 = 2 atm
V2 = ..........

P1 V1               P2 V2
_______ = _______
T1                 T2

(1)(0,5)       (2) V2
_______ = _______
300                600

V2 = 0,5 liter

Soal No. 8
Suatu gas ideal mula-mula menempati ruang yang volumenya V dan tekanan P. Jika suhu gas menjadi 5/4 T dan volumenya menjadi 3/4 V, maka tekanannya menjadi….
A. 3/4 P
B. 4/3 P
C. 3/2 P
D. 5/3 P
E. 2 P
(UN 2010 PO4)

Pembahasan


Soal No. 9
Gas dengan volume V berada di dalam ruang tertutup bertekanan P dan bersuhu T. Bila gas mengembang secara isobarik sehingga volumenya menjadi 1/2 kali volume mula-mula, maka perbandingan suhu gas mula-mula dan akhir adalah....(UN Fisika 2014)
A. 1 : 1
B. 1 : 2
C. 1 : 3
D. 2 : 1
E. 3 : 2

Pembahasan
Data soal:
P1 = P → 1
T1 = T → 1
Isobaris artinya tekanannya sama P1 = P2 → 1
Volumenya menjadi 1/2 kali volume mula-mula artinya:
V2 = 1
V1 = 2
T1 : T2 =....



Soal No. 10
Suatu gas ideal mula-mula menempati ruangan yang volumenya V dan suhu T dan tekanan P.
   Tabung I        Tabung II


Jika gas dipanaskan kondisinya seperti pada tabung 2, maka volume gas menjadi....(UN Fisika 2014)
A. 1/2 V
B. 8/9 V
C. 9/8 V
D. 2/3 V
E. 3/2 V

Pembahasan
Data soal:
Tekanan menjadi 4/3 mula-mula:
P1 = 3
P2 = 4
Suhu menjadi 3/2 mula-mula:
T1 = 2
T2 = 3
V2 = ..... V1

Teori Kinetika Gas

Teori kinetik adalah teori ilmiah tentang sifat gas. Teori berjalan dengan banyak nama, termasuk teori kinetik gas, teori kinetik-molekul, teori tabrakan, dan teori kinetik molekular gas. Ini menjelaskan sifat yang-
dapat diamati dan diukur, juga disebut makroskopik, dari gas dalam hal komposisi molekul dan aktivitas. Sementara Isaac Newton berteori bahwa tekanan gas adalah karena tolakan statis antara molekul, teori kinetik menyatakan bahwa tekanan adalah hasil dari tabrakan antara molekul.
Teori kinetik membuat sejumlah asumsi tentang gas. Pertama, gas terbuat dari partikel yang sangat kecil, masing-masing dengan massa non-nol, terus bergerak secara acak. Jumlah molekul dalam sampel gas harus cukup besar untuk perbandingan statistik.
Teori kinetik mengasumsikan bahwa molekul gas adalah bulat sempurna dan elastis, dan bahwa tabrakan dengan dinding wadah mereka juga elastis, yang berarti bahwa mereka tidak menghasilkan apapun perubahan kecepatan. Total volume molekul gas diabaikan dibandingkan dengan total volume kontainer mereka, yang berarti bahwa ada banyak ruang antara molekul. Selain itu, waktu selama tabrakan molekul gas dengan dinding wadah dapat diabaikan dalam hubungan dengan waktu antara tabrakan dengan molekul lain. Teori ini lebih bergantung pada asumsi bahwa efek relativistik atau mekanika kuantum dapat diabaikan, dan bahwa efek dari partikel-partikel gas pada satu sama lain dapat diabaikan, dengan pengecualian dari kekuatan yang diberikan oleh tumbukan. Suhu adalah satu-satunya faktor yang mempengaruhi energi kinetik rata-rata, atau energi karena gerakan, dari partikel-partikel gas.
Asumsi ini harus dijaga agar persamaan teori kinetik untuk berfungsi. Suatu gas memenuhi semua asumsi ini adalah entitas teoritis disederhanakan dikenal sebagai gas ideal. Gas estate biasanya berperilaku cukup mirip dengan gas ideal untuk persamaan kinetik untuk menjadi berguna, tetapi model ini tidak sempurna akurat.
Apa Itu Teori Kinetik Gas
Apa Itu Teori Kinetik Gas
Teori kinetik mendefinisikan tekanan sebagai gaya yang diberikan oleh molekul gas mereka bertumbukan dengan dinding wadah. Tekanan dihitung sebagai gaya per luas, atau P = F / A. Gaya adalah produk dari jumlah molekul gas, N, massa setiap molekul, m, dan kuadrat kecepatan rata-rata mereka, v2rms, semua dibagi tiga kali panjang wadah, 3l. Oleh karena itu, kita memiliki persamaan berikut untuk gaya: F = Nmv2rms/3l. Singkatan, rms, singkatan dari akar kuadrat rata-rata, rata-rata kecepatan semua partikel.
Persamaan untuk tekanan adalah P = Nmv2rms/3Al. Karena luas dikalikan dengan panjang sama dengan volume, V, persamaan ini dapat disederhanakan sebagai P = Nmv2rms/3V. Produk dari tekanan dan volume, PV, sama dengan dua pertiga total energi kinetik, atau K, yang memungkinkan derivasi dari sifat makroskopik dari salah satu sifat mikroskopis.
Suatu bagian penting dari teori kinetik adalah bahwa energi kinetik bervariasi dalam proporsi langsung dengan suhu mutlak gas. Energi kinetik adalah sama dengan produk dari suhu absolut, T, dan konstanta Boltzman, kB, dikalikan 3/2; K = 3TkB/2. Oleh karena itu, setiap kali temperatur meningkat, energi kinetik meningkat, dan tidak ada faktor-faktor lain memiliki efek pada energi kinetik.

Rabu, 04 Mei 2016

Teori ATOM

 MACAM - MACAM MODEL ATOM


TEORI ATOM


Atom adalah satuan unit terkecil dari sebuah unsur yang memiliki sifat-sifat dasar tertentu. Setiap atom terdiri dari sebuah inti kecil yang terdiri dari proton dan neutron dan sejumlah elektron pada jarak yang jauh.
Mempelajari tentang teori atom sangatlah penting sebab atom merupakan penyusun materi yang ada di alam semesta. Dengan memahami atom kita dapat mempelajari bagaimana satu atom dengan yang lain berinteraksi, mengetahui sifat-sifat atom, dan sebagainya sehigga kita dapat memanfaatkan aam semesta untuk kepentingan umat manusia.
Nama “atom” berasal dari bahasa Yunani yaitu “atomos” diperkenalkan oleh Democritus yang artinya tidak dapat dibagi lagi atau bagain terkecil dari materi yang tidak dapat dibagi lagi. Konsep atom yang merupakan penyusun materi yang tidak dapat dibagi lagi pertama kali diperkenalkan oleh ahli filsafat Yunani dan India.
Konsep atom yang lebih modern muncul pada abab ke 17 dan 18 dimana saat itu ilmu kimia mulai berkembang. Para ilmuwan mulai menggunakan teknik menimbang untuk mendapatkan pengukuran yang lebih tepat dan menggunakan ilmu fisika untuk mendukung perkembangan teori atom.

.      1. Model Atom John Dalton
Pada tahun 1808John Dalton yang merupakan seorang guru di Inggris, melakukan perenungan tentang atom. Hasil perenungan Dalton menyempurnakan teori atom Democritus. Bayangan Dalton dan Democritus adalah bahwa atom berbentuk pejal. 
John Dalton mengungkapkan bahwa :
  -       Atom adalah bagian terkecil dari suatu zat.
b.        Atom berbentuk bola sederhana yang sangat kecil, tidak dapat dibelah, diciptakan ataupun dimusnahkan.
c.        Unsur yang sama mengandung atom-atom yang sama.
d.        Atom sejenis memiliki sifat yang sama dalam segala hal, sedangkan atom yang berbeda memiliki sifat yang berbeda.
e.       Reaksi kimia terjadi karena adanya penggabungan dan pemisahan atom-atom.
f.         Bila atom-atom bergabung akan membentuk molekul. Bila atom-atom yang bergabung sama akan terbentuk molekul unsur,     sedangkan bila atom-atom yang bergabung berbeda akan terbentuk molekul senyawa.
                                                                                                                    
Ø Kelemahan teori atom Dalton
Pada perkembangan selanjutnya ditemukan berbagai fakta yang tidak dapat dijelaskan oleh teori tersebut, antara lain :
a.       Tidak dapat menjelaskan sifat listrik materi.
b.        Tidak dapat menjelaskan cara atom-atom saling berikatan.
c.        Model atom  Dalton tidak dapat menjelaskan perbedaan antara atom unsur yang satu dengan unsur yang lain.
Kelemahan –kelemahan tersebut dapat dijelaskan setelah ditemukan beberapa partikel penyusun atom, seperti elektron ditemukan oleh Joseph John Thomson tahun 1900, penemuan partikel proton oleh Goldstein tahun 1886.
Ø Kelebihan teori atom Dalton
a. Dapat menerangkan Hukum Kekekalan Massa (Hukum Lavoisier)
b. Dapat menerangkan Hukum Perbandingan Tetap (Hukum Proust)
2.      Model Atom J.J. Thomson
Dengan adanya teori atom yang dikemukakan oleh Dalton maka banyak sekali para ilmuwan yang ingin menyelidiki tentang atom. Mereka penasaran tentang apa itu atom dan apa penyusunnya? Salah satunya adalah J.J Thompson, dia melakukan percobaan dengan menggunakan tabung katoda. Dia menemukan bahwa apabila tabung katoda di beri tegangan tinggi maka suatu “sinar” yang dia sebut sebagai “sinar katoda” akan dihasilkan.
Disebabkan sinar ini muncul pada elektroda negative dan sinar ini enolak kutub negative dari medan listrik yang diaplikasikan ke tabung katoda maka Thompson menyatakan bahwa sinar katoda tersebut tak lain adalah aliran partikel bermuatan negative yang dikemudian hari disebut sebagai electron. Dengan mengganti katoda menggunakan berbagai macam logam maka Thompson tetap menghasilkan jenis sinar yang sama.
Berdasarkan hal ini maka Thompson menyatakan bahwa setiap atom pasti memiliki electron, disebabkan atom bersifat netral maka dalam atom juga harus megandung sejumlah muatan positif. Sehingga dia menyatakan bahwa:
“Atom terdiri dari awan bermuatan positif yang terdistribusi sedemikian rupa dengan muatan negative tersebar secara random di dalamnya”
Model atom ini kemudian disebut sebagai “plum pudding model” yang di Indonesia lebih dikenal sebagai model roti kismis.
Ø Kelebihan dan Kelemahan Model Atom Thomson
·         Kelebihan.
Membuktikan adanya partikel lain yang bermuatan negatif dalam atom. Berarti atom bukan merupakan bagian terkecil dari suatu unsur.
·         Kelemahan
Model Thomson ini tidak dapat menjelaskan susunan muatan positif dan negatif dalam bola atom tersebut.
3.      Model Atom Rutherford
Rutherford bersama dua orang muridnya (Hans Geigerdan Erners Masreden)melakukan percobaan yang dikenal dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson, yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka, didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih.
Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesmipulan beberapa berikut:
1.         Atom bukan merupakan bola pejal, karena hampir semua partikel alfa diteruskan
2.         Jika lempeng emas tersebut dianggap sebagai satu lapisanatom-atom emas, maka didalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif.
3.         Partikel tersebut merupakan partikelyang menyusun suatu inti atom, berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan.
Berdasarkan fakta-fakta yang didapatkan dari percobaan tersebut, Rutherford mengusulkan model atom yang dikenal dengan Model Atom Rutherfordyang menyatakan bahwa Atom terdiri dari inti atom yang sangat kecil dan bermuatan positif, dikelilingi oleh elektron yang bermuatan negatif. Rutherford menduga bahwa didalam inti atom terdapat partikel netral yang berfungsi mengikat partikel-partikel positif agar tidak saling tolak menolak.
Ø Kelemahan Model Atom Rutherford
·         Kelebihan
Membuat hipotesa bahwa atom tersusun dari inti atom dan elektron yang mengelilingi inti
·         Kelemahan
Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom. Berdasarkan teori fisika, gerakan elektron mengitari inti ini disertai pemancaran energi sehingga lama - kelamaan energi elektron akan berkurang dan lintasannya makin lama akan mendekati inti dan jatuh ke dalam inti Ambilah seutas tali dan salah satu ujungnya Anda ikatkan sepotong kayu sedangkan ujung yang lain Anda pegang. Putarkan tali tersebut di atas kepala Anda. Apa yang terjadi? Benar. Lama kelamaan putarannya akan pelan dan akan mengenai kepala Anda karena putarannya lemah dan Anda pegal memegang tali tersebut. Karena Rutherford adalah telah dikenalkan lintasan/kedudukan elektron yang nanti disebut dengan kulit.
4.      Model Atom Bohr
Pada tahun 1913, pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan atom Rutherford melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat postulat, sebagai berikut:
1.    Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
2.    Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
3.    Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, ΔE = hv.
4.    Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut. Besarnya momentum sudut merupakan kelipatan dari h/2∏ atau nh/2∏, dengan n adalah bilangan bulat dan h tetapan planck.
Menurut model atom bohr, elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang disebut kulit elektron atau tingkat energi. Tingkat energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.
Ø Kelebihan dan Kelemahan
·         Kelebihan
atom Bohr adalah bahwa atom terdiri dari beberapa kulit untuk tempat berpindahnya elektron.
·         Kelemahan
model atom ini adalah tidak dapat menjelaskan efek Zeeman dan efek Strack
5.      Model Atom Modern
Model atom mekanika kuantum dikembangkan oleh Erwin Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.
Daerah ruang di sekitar inti dengan kebolehjadian untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan ditemukannya elektron dalam tiga dimensi.
Ø Kelebihan
1.       Mengetahui dimana posisi elektron yang sedang mengorbit
2.        BIsa ngukur perpindahan energi eksitasi dan emisinya
3.        BIsa teridentifikasi kalau di inti terdapat proton dan netron kemudian dikelilingi oleh elektron yang berputar diporosnya/ di orbitalnya
Ø Kelemahan Model Atom Modern
Persamaan gelombang Schrodinger hanya dapat diterapkan secara eksak untuk partikel dalam kotak dan atom dengan elektron tunggal.